97 research outputs found

    Evidence of phonon-assisted tunnelling in electrical conduction through DNA molecules

    Get PDF
    We propose a phonon-assisted tunnelling model for explanation of conductivity dependence on temperature and temperature-dependent I-V characteristics in deoxyribonucleic acid (DNA) molecules. The capability of this model for explanation of conductivity peculiarities in DNA is illustrated by comparison of the temperature dependent I-V data extracted from some articles with tunnelling rate dependences on temperature and field strength computed according to the phonon-assisted tunnelling theory. PACS Codes: 87.15.-v, 71.38.-k, 73.40.GkComment: 6 pages, 3 figure

    Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI

    Get PDF
    PURPOSE: We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid- Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). METHODS: The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. RESULTS: The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 high-grade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48 %, 6 % and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. CONCLUSIONS: This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management

    Careers in context: An international study of career goals as mesostructure between societies' career-related human potential and proactive career behaviour

    Get PDF
    Careers exist in a societal context that offers both constraints and opportunities for career actors. Whereas most studies focus on proximal individual and/or organisational-level variables, we provide insights into how career goals and behaviours are understood and embedded in the more distal societal context. More specifically, we operationalise societal context using the career-related human potential composite and aim to understand if and why career goals and behaviours vary between countries. Drawing on a model of career structuration and using multilevel mediation modelling, we draw on a survey of 17,986 employees from 27 countries, covering nine of GLOBE's 10 cultural clusters, and national statistical data to examine the relationship between societal context (macrostructure building the career-opportunity structure) and actors' career goals (career mesostructure) and career behaviour (actions). We show that societal context in terms of societies' career-related human potential composite is negatively associated with the importance given to financial achievements as a specific career mesostructure in a society that is positively related to individuals' proactive career behaviour. Our career mesostructure fully mediates the relationship between societal context and individuals' proactive career behaviour. In this way, we expand career theory's scope beyond occupation- and organisation-related factors

    The Potential and Challenges of Nanopore Sequencing

    Get PDF
    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.Molecular and Cellular BiologyPhysic
    corecore